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HIGHER-ORDER APPROXIMATIONS OF CNOIDAL-WAVE THEORY

E. A. Karabut UDC 532.59

A solution of the problem of gravity waves on a liquid surface is sought in the form of a series
whose first term corresponds to shallow-water theory. Such series have been previously studied
numerically and analytically but their structure remains unclear because of the complicated
initial formulation of the problem. In the present paper, instead of the strongly linear boundary-
value problem with a free boundary containing several unknown functions, we solve an ordinary
quadratic-nonlinear differential-difference equation of the first order containing an unknown
function.

Introduction. We consider the classical problem of waves on a surface of a liquid of finite depth
having one trough and one crest on a period. The liquid is an ideal and incompressible, and surface tension
is absent. The bottom is even, the flow is steady, and the free surface is immovable and periodic.

In the present paper, when speaking of shallow-water theory, we mean the series expansion first de-
scribed by K. Friedrichs and not the simple theory of shallow water without solitary waves. Below, this series
is called a shallow-water series. Its first terms are found in the early works of Boussinesq, Rayleigh, Ko-
rteweg, and de Vries. The solutions obtained are called cnoidal waves because they contain the functions cn.
K. Friedrichs proposed a systematic procedure for obtaining successive terms of the series, including different
extensions in two different directions, introduction of the small parameter ¢ defined by these extensions, and
an asymptotic series in ¢.

The wave problem is appreciably simplified if it is considered not in the plane of physical variables but
in the plane of a complex potential. In this case, instead of the problem in a region with a boundary that
is not known in advance, we have a boundary-value problem in a known region — a band. In the present
work, we seek a shallow-water series for the conformal mapping of the band onto the region occupied by the
liquid. The solution should be periodic along the band since we seek periodic gravity waves. In [1-3], it is
proposed that the solution should also be periodic across the band. This assumption proves useful because,
in some cases, a solution that is periodic across the band can be found. The basis for this assumption is the
fact that the shallow-water series contains the Jacobi elliptic functions cn (or sn), which are doubly periodic.
Previously, this series has been examined only on the boundary and has not been studied outside of it. The
above assumption can be validated by proving that all terms of the series are polynomials in the Jacobian
functions. ‘

Using a computer, Fenton obtained 9 terms of the series for solitary waves [4] and 5 terms for cnoidal
waves {5]. In [6-8], respectively, 14, 17, and 27 terms of the series for solitary waves were obtained. Littman
[9] and Ter-Krikorov [10] solved the problem in the plane of a complex potential and proved the existence of
cnoidal waves.

Construction of higher-order approximations of shallow-water theory reduces to sequential search for
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terms of the series g;(z) from the differential equation
g7 +4p%((1 + #?) = 3k?sn* (2. k)lg; = hj(z) (5> 2). (1)

where p and k are free real parameters. The main difficulty is that of finding the right side of the equation
hj(z). The conventional method of determining /;(z) from the terms found previously is cumbersome, and
in the present work. explicit formulas for h;(z) are obtained. The functions h;(z) are even and periodic with
period 2K (k)/p. Here and below, K(k) and E(k) denote full elliptic integrals of the first and second order.
respectively. The functions g;(z) should also be even and periodic. The following lemma, which is proved in
[10], is valid.

Lemma 1. If h; is a continuous even periodic function with period 2K (k)/p, then Eq. (1) has a
unique even periodic solution g;(z) with the same period.

However, the solution g;(z) is not unique since the function h;(z) is determined with accuracy up to
an arbitrary additive constant p;. In the works cited above activities, this circumstance was not mentioned
and the problem of choosing u; was not considered.

Formulation of the Problem. We place the origin of Cartesian coordinates at the bottom. The X
axis is directed along the bottom from left to right, and the Y axis is directed vertically upward so that it
passes through the wave crest (Fig. 1a).

Let hg and ug be the depth and velocity on the free surface in the wave trough and g be the acceleration
of gravity. We assume that the streamfunction ¥ is equal to zero at the bottom and ¥ = ¥, on the free
surface. Let ¥y > 0, i.e., the liquid moves from left to right.

Making the problem nondimensional gives rise to two constants: § = Wo/(ugho) and the Froude number
Fr = ug/v/gho. In the plane of the dimensionless complex potential x = ¢ + 1y = (® + 1¥) /Ty, the liquid
corresponds to a band of width 1 (Fig. 1b). It is necessary to determine the conformal mapping of this band
onto the region occupied by the liquid in the plane of physical variables. We seek this mapping in the form

Z=X+1iY = ho(2 + FrD) f(x). (2)

The choice of the coefficient 2 + Fr? here is not arbitrary. With this choice, the Bernoulli integral contains
only one rather than two dimensionless constants:

A= (6Fr)?/(2 + Fr2)3. (3)

Let the point x = 0 be under the wave crest, i.e., f(0) = 0. The function f(x) completely defines all
flow parameters. Even without knowledge of Fr, examining f(y + ¢}, we can determine the shape of the free
surface in an unknown length scale. The Froude number Fr, and, hence, this scale are obtained from the
condition Im fy = 1/(2 + Fr?), where fy is the value of the conformal mapping at the lowest point on the free
surface.

Thus, to find waves on water, we should solve the following problem.

Problem 1. To determine the constant A and the function f(x) that is analytic in the band

0<y <1, —00 < @ < 00 (4)

and satisfies the boundary conditions of constant pressure (Bernoulli integral)
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and even bottom
Imf=0 (¥ =0). (6)
It is believed that expansion in a shallow-water series should be preceded by different extensions in two
different directions. For example, Friedrichs and Hyers [11], examining a particular case of solitary waves,
write that if the horizontal independent variable is subjected to extension that depends on the parameter ¢
while the vertical independent variable is unchanged, the harmonic character of the functions describing the
flow is disturbed. They believe that this procedure is obligatory with a direct approach to studyving solitary
waves. How does one construct the shallow-water series expansion for conformal mapping? If different
extensions in ¢ and ¥ are introduced, all advantages of the complex description of the problem are lost. We
act differently: we assume that f(x) is a function of x that varies slowly, i.e., a small parameter ¢ exists and
f depends on z = x + iy = £x and not on x. The new function is denoted by the same character f(z), and
from the context below it is always clear which argument the function f has. The function f(z) remains
analytic, and its real and imaginary parts are harmonic functions.
Definition 1. A series expansion of the form

F(2) =7 folz) +efi(2) + 2 falz) + ... (7)
is called a shallow-water series.

We denote g;(z) = df;(z)/dz. Below, the derivative df(z)/dx = go(z) + £2g1(2) + e*ga(2) + ... is
also called a shallow-water series expansion. At first glance, the Definition 1 is incomplete and should be
supplemented by the series for the constant

)\=)\0+€2)\1+E4/\2+... (8)
because in solving the Problem 1, it is necessary to use both series (7) and (8). Actually, series (7) is
autonomous since, as shown below, there is a formulation of the wave problem that does not contain A.

The shallow-water series is consistent if for £ = 0 there is a flow with a horizontal free surface and with
the Froude number equal to unity, i.e., § = Fr = 1. Thus, from (2) and (3) we determine the initial terms
fo = z/3 and Ay = 1/27. The following terms of the series are found from the solution of the differential
equations obtained by substitution of series (7) and (8) into (4)—(6) and equating terms with identical powers
of €. Since the calculations are rather complicated, we make a number of simplifications.

The first simplification consists of moving over from the boundary-value Problem 1 to an equation that
is valid not only on the boundary but also in a certain region. By virtue of the symmetry principle, from the

even bottom condition (6), we have f(¢ + i) = f(¢ — i). Hence, condition (5) can be written as
dy d LHif(e+19) — fleg—1)]

We continue this equation analytically from the boundary. Replacing ¢ by x, we obtain the cubic-nonlinear

differential-difference equation

dx dx L+ilf(x+1) - fix—9]
However, the wave problem is quadratic-nonlinear, which was first shown by Babenko [12], who derived
the corresponding operator equation. Therefore, the second simplification consists of obtaining a quadratic-
nonlinear implication of (10). Replacing x by x +  and x — 4, we obtain

df (x + 249) A

X {1+4[f(x +2)) - (O]} = Foojdx (11)
P2 (1441500 — Flx =291} = e (12)

Equating the left sides of (11) and (12), we obtain the required implication. Thus, the third simplification is
achieved: the new equation does not contain A. Thus, to find waves on water, instead of solving Problem 1,
we solve the following problem.
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Problem 2. To find an analytic function f{x) that, in a certain region, satisfies the equation

PO 1 tse+ 20 - 5003 = L2 40 - s - 20, (13)

In transition from Problem 1 to Problem 2, the replacement of ¢ by ¥, i.e., the conversion from (9) to
(10), is important. This is equivalent to the analytic continuation of f(x) from the boundary of the band (4)
to a certain region outside the band, which is possible if there is a region without singular points outside the
band (4). We assume, for example, that f(x) is analytic in a certain rectangle ¢ < ¢ < @9, =2 < 9 < 3.
Then, Eq. (10) is valid in the smaller rectangle ¢1 < ¢ < @2, —1 < v < 2. The shift of the latter by —i
and +¢ gives, accordingly, two new rectangles, in each of which (11} or (12) holds. The overlapping of these
rectangles gives the rectangle 1 < ¢ < g2. 0 < ¥ < 1, i.e., the part of the band (4), in which (13) holds.

Solution of the Problem in Series. We cannot prove the analyticity of f(x) outside the band (4),
and, hence, we cannot prove that Problem 2 is an implication of Problem 1. However, it is important for us
that the solutions in series (7) and (8) of Problems 1 and 2 give identical results.

Replacing x by z in (13), we obtain

PEL 2 1 +ilfz +200) - 7N = LEZZD 1 441102) - 7z - 21 (19)

Let us show that Eq. (14) can be written as d{...}/dz = 0. Hence, the expression in braces should be a
constant. We rewrite (14) in the form

df(z+ 28y df(z — 2ig)

i(A; + A2) + . - = =0
where 1d
A= 5 —{[f(e +2ie) = f(2))° + [f(2 - 2ig) = f(2)},

Ay

)+ £z = 2ie) - 2f(2)}

and substitute the Taylor series expansion into these expressions:
dl+1

x FPRY) d/ d z 2v c
f(z:i:2‘i6)—f(Z)=ZE:%@—Ejf(2), (== 2i) i : Z(iQ,L E;_Tgf(z)-
=1 ' - )

The quantity A; is represented as a derivative. A similar representation can also be obtained for As if we
use the identity

L, &(2) i) _ d ”il(_l)p+1dpf<z> PP f(z)

dz dz% T dz dzP dz2%i-p

p=1
After some simplifications, we have
2m-—1 oo
d2m pf( ) (2i5)2m+1 d2m+1f(2)
c‘ 2 —
dz { Z(Ql " Z mp dzl’ dz?m—p +22:0 @2m+1)! dz2?mt! }_0’ (15)
m=

where ymp = 1/(!(2m — p)!) + (—1)"“/(27}1)!.
We substitute the shallow-water series expansion (7) into Eq. (15). Equating to zero the coefficients
at €% (j > 1), we obtain

L S N i L.l b i
EE{ E:I(Qz K Z Ymp Z dzp ~ d2mr Zl (2m-1)! dz?m-1 } =0 (16)
m= p=1 m=

The first nontrivial equation of (16) for j = 3 has the form

LI T ) o
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The expression in braces should be a constant. We designate it by u;. Similar constants p;_o arise
in integrating the next equations of (16). As a result, replacing f;(z) by g;(z), we formulate the following
theorem.

Theorem 1. The functions g;(z) satisfy the differential equations

g1 +(27/2) = m, (17)
g +2Tqgi=h; (G 22), (18)
where R L P
By = Z Z Gj+2—m—I
J dzp—- dz2m—p—l
m=2 p=1 I=1
&= d2- 9 2— l
Zglg]+l H—Zﬁz - 2ZJ+2 + . (19)
The constants amp and B are obtamed from the formula.s
1 (__1)P+1

mp = 9(~1)"22" D[ | Bi=s(-pier

Em—pl T @m) @
and the constants p; are not determined.

Thus we have a recurrent chain of differential equations from which g;(z) can be sequentially obtained.
Below, it is shown that there is a set of even periodic solutions of Egs. (17) and (18) that depend on two real
parameters. The unknown p; is expressed in terms of these parameters. The remaining constants u; (j > 2)
are arbitrary numbers, and an even periodic solution g;(z) exists regardless of how they are chosen.

First-Order Approximation. Integrating Eq. (17), we obtain
(g1))% = —9g3 + 2u191 + const = P(gy). (20)

The cubic polynomial P(g;) = —9(g1 — v0)(91 — v1){(g1 — v2) should have only real roots vy, v1, and vo.
Indeed, the velocity at the bottom under the crest and the trough reaches an extremum. Since the quantity
const/(df /dx) has the meaning of velocity, g] should be equal to zero at these points. From (20) we find
that P(g;) = O at these two points at the bottom. Thus, at least two roots P(g;) are real since the function
g1 is real everywhere at the bottom. The reality of the third root follows from the reality of the polynomial
coefficients.

Without loss of generality, we set vy > v1 > vo. The coefficient at gf in P(g;) is equal to zero, and,
hence,

vo+vy + v =0. (21)

We examine Eq. (20) at the bottom, i.e., we set z = z. Under the wave crest (z = 0), the liquid velocity
has a minimum. Therefore, with increase in z, we have g; < 0 in the neighborhood to the right of the point x =
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0. This allows us to select the proper sign in extracting the root: dg/dr = —3 /~(g1 — v0){(g1 — v1)(g1 — 1)
(z > 0). The radicand should be positive and limited. On the plot of P(g;), these conditions correspond to
the chosen segment (Fig. 2). The function g; takes the maximum value vy under the crest z = 0. Therefore,
the constant of integration is known:

91

d¢
A V=€ =) (€ — 1) (€ — 12)

On the left side there is an elliptic integral (for more details see {13]), which is inverted to give

g1 =w — (v —wm)sn’(pz,k)  (O<k<1): (22}

3 vy — Vv
p=35vVvo v k=4 s (23)
W—

The five parameters vy, 11, 2, p, and k are related by three Eqgs. (21) and (23). Therefore, two parameters —
p and the modulus of the elliptic functions k¥ — can be considered independent.!

Expressing all parameters in (22) in terms of p and & and replacing x by z, we find the first nontrivial
term of the shallow-water series expansion:

= —3z.

4 4 4 4
2 2 2_ 2 2 2 2 2
) B R I S ] =2 (1+k)z ==k de|.
g1 p[27(+ ) =gk snioz|, fi p[27(+ )z =3 /Snpé E}
I
To obtain a solution expressed in terms of Y, it is necessary to introduce the new small parameter
# = ¢p. The conformal mapping then takes the form

X
FO) =2 x+ 92{-4- (1+ E2)x ék2/sn204dc} +0®@Y.
3 27 9 4
We obtained a two-parameter set of wave solutions, with the wave amplitude and length depending on both
parameters § and & (0 < £ < 1). Ask — 0 and k& — 1, we have sn — sin and sn — th. These limiting cases
correspond to sinusoidal and solitary waves:
Fo0 = x(5+8 52) + 0K 5 sinx, F00 = x(5 -

Second-Order Approximation. We now solve of Egs. (18). We introduce designations for the
arguments of the elliptic functions u = pz and for the Jacobi elliptic functions s = snu, ¢ = cnu and
d =dnu.

We consider the homogeneous equation (18)

4 4

2

—_ 8 — tanh fy.
927)+ gan X

g;' +27g19; = 0. (24)

Differentiating (17), we see that g} is a solution of this equation. Thus, we obtain the first solution of (24):
d 2

v(z) = d—i = 2pscd. (25)

Because the Wronskian is equal to unity, the second linearly independent solution is v / dz/ v?. Hence, the

general solution (18) can be written as

- d dz
gj=61v+czv/5§+v/1—}-5/vhjdz. (26)

1Without loss of generality, the parameter p can be set equal to unity because, as shown below, it is contained
only in the product ep. Treating the product €p as a new small parameter is equivalent to the assumption
that p = 1.
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If the function h; is known, then, according to Lemma 1 for the even and periodic function g;(z), the constants
¢1 and ¢ should be determined uniquely.
We calculate go. From (19) for j = 2, we have
d2g1 15 (dg1)2 4 d4g1

hy = 15q) =5 + 22 rdg
2 S + 2 \dz +15 dzt +h2 (27)

The quantity kg is a polynomial in s?. To prove this statement, we use the following lemma.
Lemma 2. If G, and G are polynomials in s of degrees n1 and no, respectively, the product
d?-iG 1 di G2
e T— ] <
&7 dm 0SISw)

d**71G) dGy .
dz?r—i  dzJ (0<j<2p)
is a polynomial in s of degree ni + na + p.
Proof. By induction over j invoking the formula d/dz = 2p\/(1 — s2)(1 ~ k2s2) d/ds, we find that if
G is a polynomial in s? of degree n, then its odd and even derivatives are determined from the formulas
d¥-1G d¥G
- = — (] — k242 YN
5T =s/(1—-s2)(1 - k2s2) ML 7 =N,
where M and N are polynomials in s® of degrees n + j — 2 and n + j, respectively. Thus, Lemma 2 is proved.
Lemma 2 can be written in simplified form: each differentiation of a polynomial in s with respect to z
increases its degree by unity. Because g; is a polynomial in s? of degree 1, then from (27) it follows that ho
is a polynomial in s? of degree 3:

ha = b3 + bis? + b3s* + b3s°. (28)

‘We note that all coefficients of this polynomial are known, except for bg, because this coefficient contains the
unknown constant pa.

1
In view of (25) and (28), we have /vhz dz = /h2 d(s®) = b3s? + 3 bist + %bgsﬁ + %bgss. Denoting

S?n—-l
Jn = scd/ 5 du, from (26) we obtain
c2d .
1 (0 L 1, 3
g2 = crsed + cpJy + ﬁ(b2J2 +5bhJs+ 3B+ g szE,). (29)
All integrals J, (1 < n < 5) included in (29) can be calculated. They consist of three terms: a square

polynomial in s® and the functions uscd and sed / d? du, multiplied by certain constants, and have the form

Jp = Dg + D,lls2 + D,%s4 + Epuscd + Fpscd | d?du. This can be proved by direct differentiation using, for
examplé, the MAPLE system. The constants D', Ey, and F, are shown in Table 1.

From (29) it follows that g, also consists of a polynomial in s and the functions u csd and scd / d? du:

u
g2 = a9 + ads? + a3s* + ¢; sed + scd (wlu + wo / d? du). (30)

In (29), among the constants c;, cs, bg, b3, b2, and b2, the unknowns to be determined are ¢y, ¢z, and bg. In
(30), the unknown constant ¢; is retained, and the new constants — the polynomial coefficients ag, aé, and
a% and w; and w9 — are functions of the unknowns ¢y and bg. For example, in w; and ws, the unknowns
enter as follows:

1 b3
wp = ————-—-—-{02(k2 -2)— —2,;+-~-},
k2 -1 (31)
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TABLE 1

n | DY DL D3 E, F,
Ll 1+ K2k -3k +2) | 2K°(1 -k +k%) -2 21—k + kY
(k2 = 1)2 (k2 —1)2 k2 -1 (k2 —1)?
5| o k41 R (148 1 1+&?
(k2 —1)2 (k2 =1)2 k2 -1 TRz -1)2
3| o K1 _ 2 1 2
(k2 —1)2 (k2 -1)2 k21 (k2 —1)2
A o 2 1+ 1 14+
(k2 = 1) (k2 —1)2 k2(k? 1) k2(k? —1)2
51 o 1+4? 14 k=2 2K K+
k2(k2 —1)2 E2(k2 - 1)2 ki(k2 = 1) ki(kZ —1)2
w2=——1——-{202(1—k2+k4)+-2-)—g—(1+k2)+ }
(k2 -1)2 2p? RPN

Let the constant ps on the right side (27) be known. Then, one of the three unknowns b3 is specified.
Hence, the function ho is determined, and according to Lemma 1, the unknowns ¢; and ¢ are determined

uniquely. It is necessary to set ¢; = 0 because the periodic function scd is odd. Next, if we require that the
u

quantity wiu + w2 / d? du be periodic, then, as follows from (30), the function go is both even and periodic.
0

U

This requirement is satisfied because although the function / d%du is not periodic, its value increases by

0
2R (k) as u increases by 2E(k). Hence, go is a periodic function if
wi K (k) + weE(k) = 0.
Substituting (31) into (32), we obtain an equation for the unknown cs.
However, the constant us is unknown, and, hence, the function g is not determined uniquely, generally

speaking. Let us show that the nonuniqueness is related to the uncertainty of the parameter . We analyze
how the shallow-water series expansion

(32)

da 1 1 ,

L = 4+2g(2)+ g2 +... == +e%q1(ex) e galex) + .-

dx 3 3
changes when ¢ is replaced by ¢ + ac® + ..., where a is a real number. With allowance for the Taylor
series g1 ([e + ag® + ...]x) = g1(ex) + ae®x dg1/dz + ..., we obtain the new shallow-water series expansion

df /dx = 1/3+€2g1(2) +*G2(2) +. .., where o(2) = g2(z) +2ag1(z) + azdgi(z)/dz. Hence, the above change
in € leads to a change in go(z). Because z dg;/dz coincides with uscd with accuracy to a numerical coefficient,
the last statement can be refined: with a change in € the coefficient w; in (30) changes. It is possible to select
¢ such that w; = 0, and, hence, it is also necessary to set we = 0 (otherwise, g2 is a nonperiodic function).
Only in this case is the function gy a polynomial in s?. The quantity a is determined uniquely from the
equation w; = 0.

Thus, there is a parameter £ for which g2 has the form of a square polynomial in s?: go = a3+als?+a3s*.
The coefficients of this polynomial are expressed in terms of the unknowns c; and 9 (c; = 0), which can be
found from the solution of the linear system w; = 0, we = 0 [w; and wy are determined in (31)]. As a result,
we have

g2 = p*[—(16/1215)(13k* — 43k? + 13) — (64/81)k%(1 + k?)s® + (32/27)k*s%].

Higher-Order Approximation. We prove by induction over j that g; are polynomials in s, Let
the inductive hypothesis be valid: for I < j, all g; are polynomials in s> of degree [. We solve Egs. (18).
Lemma 2 leads directly to
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Lemma 3. If g = a + als®+...+ afsm (I < j), then the function h; is a polynomial in s? of order
G+ 1 by =004 bls? + ..+ BTS20,
Taking into account (25), from (26) we obtain the following formula, which is similar to (29):
B J+3 an;}~2 '
9 —615€d+02J1+'2-;2- — (7>2). (33)

n=2

Here the unknowns are c;, ¢s, and b?. Previously, the form of the integrals J,, was obtained only for 1 < n < 5.
To establish the form of the remaining integrals which are included in (33), we need
Lemma 4. For n > 5, we have

Jp = Pp(s) + Qruscd + R, scd / d? du, (34)

where Py(s) is a polynomial in s* of degree n — 3 and Q, and R, are constants.

Proof. We designate K, = scd %" du. Using the recursive formula

1 92 on_a  (2n—2)(1+k?) 2n -3
K, = ———c*d*s™" K1 = =35 Kn—2,
PR A ey 1y e R e sy R
it is not difficult to prove by induction over n that
K, = Lp(s) + Myuscd + N, scd/d2 du, (35)

where L,(s) is a polynomial in s? of order n + 1 and Af, and N, are constants. Using (35) and applying
induction over n to n—2

1 1 d?c? used scd
Tnsz = == Jos1 + — S K — - 2 du,
2=t }Zﬁ AT gy ) S T Gy /d du

we obtain (34). Lemma 4 is proved.
From (33) we have

n=0

]' u
g; = Z a;-'s:')" + ¢1 sed + sed (wlu + wo /d2 du). (36)
0

The further reasoning is similar to the one above. In (36), we set ¢; = 0 and express the remaining constants
a;’, w1, and ws in terms of ¢y and b?. For example, w; and ws are determined from formulas that follow from
(31) when 83 is replaced by b?. Replacing £ by e +ac¥ =1 +..., we replace g;(z) by g;(z) +2ag1(z)+az dg /dz,
and, hence, change w; in (36). We set w; = 0. This condition determines the constant a uniquely. Requiring
that wqe = 0, we eliminate the nonperiodic term. Next, solving the system w; = 0, w2 = 0, we obtain ¢3 and
b‘; and then, the polynomial coefficients a}'. Thus, by induction over j, we proved the following theorem.
Theorem 2. There erists a unique parameter ¢ such that in the shallow-water series expansion

a 1 2 4
— = —+e“gi{ex) +<galex) + ... 37
3 g1(ex) + <7 ga(ex) (37)
each term g; is o polynomial in s% of degree j, i.e.,
gi =a2+a}52+...+a§s2j. (38)

Computations. We seek g; in the form of the polynomial (38). Substituting (38) into Eq. (18) and
equating terms with identical powers of s, we have a linear system of equations with a triangular matrix. The
five initial terms of the series (37) are

g1 4,99, 4 2 g 32 44 64, 212 16 2 4
LA il - I = ket - — k - —(13-43% 13k
e gks +27(1+k), o 271»3 81k(1+ )s 1215(3 3k7 4+ 13K%),

as 4352 6 6 4352 4 2\ 4 256 9 2 4\ 2

L= Tk — k(1 +Ek — ——k*(2+49k° + 2k

5= o5 P S toarg £ (L F RS - e K2+ 49K+ 2K
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64

L (1 + k) (242 k* — 521 k% + 242),

+

ga _ LORO0R 188 000 W 6y L g
£~ o113 ©° T omgrs FLHE)s

16,384 1024 ,
—— k(59 k* + 322 k2 + 59)s* _ 102 E2(1 + k) (1898 k* 4 15,079 k2 + 1898)s>

+ 273,375 5,740,875
256 2 4 6 8
— o (16135 — 43,658 K + 112,101 K* — 43,638 K° + 16,135 £°),
g5 11165696 010 11.165.606 o o o 16384
g5 _ _1L100.5%0 1110900 1814 k2)e® - (180, 98412
10 207675 ¢ 5 T Trme0s ¢ LTS~ 5mg g (189,041 + 730984k

/ 8192 , ,
189,041 k*)s® + ———= k(1 + K2 :4473.303 k% + 37, 4
+ )s® + PR (1 + k2)(37,528 k*473,303 k2 + 37,528)s* +

8192 5 2 4 6 812
-k —- e 3 102 k . X
361,675,125L (26,909 — 166,402 k“ — 111,600 k* — 166,402 £° + 26,909 k°)s

1024
(1 + k%)(3,314,710 k% — 15,153,473 k5 607 K — ;2
+ 11’935’279‘125( + £9)(3,314,710 15,153,473 k° + 7,595,607 & 15,153,473 k* + 3.314,710).

The above formulas are rather complicated. They are polynomials in s> whose coefficients are, in turn,
polynomials in k2. We note that this is not a single representation of the solution. It is possible to represent
g; as polynomials in ¢? or d* whose coefficients are also polynomials in k2. The simplest representation of
the solution is obviously obtained if g; is expressed via the first term of the series g;. Introducing the new

variable ¢ = —(4/9)k?s® + (4/27)(1 + k?), we write g; in the form of polynomials in :
I Boge2 38 g2

p’ o T 1215
B = T - (- F o (B = (=14 2K+ ),
+ %%;—g (k2 = 2)(=1+2kH)(1 + k)¢ - i_%gg_;‘;lg (1— k2 + kY2,

1,944,064

gs _ 2,649,672 30,114,304
165,375

P10~ T 1225 ¢ 165,375 (K = 2)(~1+ 2691+ #%)¢7

(1-kF+EHG+

20,860,928 7,820,391,424
2T — k2 kN2 > ’ s B2 — 9)(—1 + 2k2)(1 + k2 ERTRT
13,395,375 Rt s e e ¢ - DL - K+ K

The new formulas are much simpler. The coefficients of ( are polynomials in k%, which can be factored,
and only the numerical coefficient remains undetermined. There are two types of factors: the expression
1 — k% + k* or this expression multiplied by (k% — 2)(2k? — 1)(k% + 1).

We emphasize the property g;(k?,¢) = (~1)7g;(1 — k%, —(), which implies that the solution expressed
in terms of 62, k2, and ¢ has invariance:
9 (0*,k%,¢) = %(—02, 1- k%, ~Q).

dx
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This property appears to be important since it gives an implicit nonlinear transformation that relates two
solutions with different wavelength. For example, solitary waves (k = 1) and waves on a surface of an infinitely
deep liquid (k = 0) are related by the transformation 8 — 6.

Conclusion. In the present paper, we propose a new method for deriving the shallow-water expansion
based on replacing the integrodifferential equation to which the wave problem is usually reduced by the
differential-difference equation (13). As compared to the existing methods, the proposed method is simpler
and can be useful, in particular, in numerical calculations since it allows one to construct series more rapidly
and more precisely and to find a greater number of series terms. Other studies (see, for example, [6-8])
employ a more complex method, in which four series, whose terms are functions of two variables, are used
simultaneously.

In the theoretical aspect, the proposed method is also of interest:

1) for Eq. (13), exact solutions are known [1-3];

2) the Stokes series expansion (the second known expansion of the theory of waves on water) is obtained
in a natural fashion from (13) if a solution of this equation is sought in the form of the series

FO0 = folx) +fil) + €20+ - (39)

It is known that the Stokes series expansion is not adequate for describing long waves, and, in contrast, the
shallow-water series expansion is appropriate for long waves but unsuitable for short waves. It is now possible
to compare both series (7) and (39) and to attempt to construct a series expansion that applies universally
for all wavelengths.

We are grateful to N. I. Makarenko for useful discussions.
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