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H I G H E R - O R D E R  A P P R O X I M A T I O N S  O F  C N O I D A L - W A V E  T H E O R Y  

E.  A.  K a r a b u t  UDC 532.59 

A solution of the problem of gravity waves on a liquid surface is sought in the form of a series 
whose first term corresponds to shallow-water theory. Such series have been previously studied 
numerically and analytically but their structure remains unclear because of the complicated 
initial formulation of the problem. In the present paper, instead of the strongly linear boundary- 
value problem with a free boundary containing several unknown functions, we solve an ordinary 
quadratic-nonlinear differential-difference equation of the first order containing an unknown 
function. 

I n t r o d u c t i o n .  We consider the classical problem of waves on a surface of a liquid of finite depth 
having one trough and one crest on a period. The  liquid is an ideal and incompressible, and surface tension 
is absent. The  bot tom is even, the flow is steady, and the free surface is immovable and periodic. 

In the present paper, when speaking of shallow-water theory, we mean the series expansion first de- 
scribed by K. Friedrichs and not the simple theory of shallow water without solitary waves. Below, this series 
is called a shallow-water series. Its first terms are found in the early works of Boussinesq, Rayleigh, Ko- 
rteweg, and de Vries. The solutions obtained are called cnoidal waves because they contain the functions cn. 
K. Friedrichs proposed a systematic procedure for obtaining successive terms of the series, including different 
extensions in two different directions, introduction of the small parameter  x defined by these extensions, and 
an asymptotic series in ~. 

The  wave problem is appreciably simplified if it is considered not in the plane of physical variables but  
in the plane of a complex potential. In this case, instead of the problem in a region with a boundary that  
is not known in advance, we have a boundary-value problem in a known region - -  a band. In the present 
work, we seek a shallow-water series for the conformal mapping of the band onto the region occupied by the 
liquid. The  solution should be periodic along the band since we seek periodic gravity waves. In [1-3], it is 
proposed that  the solution should also be periodic across the band. This assumption proves useful because, 
in some cases, a solution that  is periodic across the band can be found. The basis for this assumption is the 
fact tha t  the shallow-water series contains the Jacobi elliptic functions cn (or sn), which are doubly periodic. 
Previously, this series has been examined only on the boundary and has not been studied outside of it. The  
above assumption can be validated by proving tha t  all terms of the series are polynomials in the Jacobian 
functions. 

Using a computer,  Fenton obtained 9 terms of the series for solitary waves [4] and 5 terms for cnoidal 
waves [5]. In [6-8], respectively, 14, 17, and 27 terms of the series for solitary waves were obtained. Li t tman 
[9] and Ter-Krikorov [10] solved the problem in the plane of a complex potential  and proved the existence of 
cnoidal waves. 

Construction of higher-order approximations of shallow-water theory reduces to sequential search for 
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terms of the series gj(z) from the differential equation 

gj' + 4p2[(1 + k 2) - 3k2sn2(pz, k)]gj = hi(z) (j >1 2), (1) 

where p and k are free real parameters. The main difficulty is that  of finding the right side of the equation 
hi(z). The  conventional method of determining hj(z) from the terms found previously is cumbersome, and 
in the present work, explicit formulas for hj(z) are obtained. The functions hj(z) are even and periodic with 
period 2K(k)/p.  Here and below, K(k) and E(k) denote full elliptic integrals of the first and second order. 
respectively. The functions gj(z) should also be even and periodic. The following lemma, which is proved in 
[10], is valid. 

L e m m a  1. If  hj is a continuous even periodic function with period 2K(k)/p,  then Eq. (1) has a 
unique even periodic solution gj(z) with the same period. 

However, the solution gj(z) is not unique since the function hj(z) is determined with accuracy up to 
an arbi t rary additive constant #j. In the works cited above activities, this circumstance was not mentioned 
and the problem of choosing pj was not considered. 

F o r m u l a t i o n  of  t h e  P r o b l e m .  We place the origin of Cartesian coordinates at the bottom. The X 
axis is directed along the bot tom from left to right, and the Y axis is directed vertically upward so that  it 
passes through the wave crest (Fig. la). 

Let h0 and u0 be the depth and velocity on the free surface in the wave trough and g be the acceleration 
of gravity. We assume that  the streamfunction �9 is equal to zero at the bot tom and �9 = ~0 on the free 
surface. Let ~0 > 0, i.e., the liquid moves from left to right. 

Making the problem nondimensional gives rise to two constants: ~ = q2o/(uoho) and the Froude number 
Fr = uo/~/gho. In the plane of the dimensionless complex potential  X = V~ + iO -- (~ + i ~ ) / ~ 0 ,  the liquid 
corresponds to a band of width 1 (Fig. lb).  It is necessary to determine the conformal mapping of this band 
onto the region occupied by the liquid in the plane of physical variables. We seek this mapping in the form 

Z = X + iY  = h0(2 + Fr2)f (x) .  (2) 

The  choice of the coefficient 2 + Fr 2 here is not arbitrary. With  this choice, the Bernoulli integral contains 
only one rather  than two dimensionless constants: 

= (6 Fr)2/(2 + Fr2) 3. (3) 

Let the point X -- 0 be under the wave crest, i.e., f (0)  -- 0. The function f ( x )  completely defines all 
flow parameters.  Even without knowledge of Fr, examining f ( ~  + i), we can determine the shape of the free 
surface in an unknown length scale. The Froude number Fr, and, hence, this scale are obtained from the 

condition I m f v  = 1/(2 + Fr2), where fv is the value of the conformal mapping at the lowest point on the free 

surface. 
Thus, to find waves on water, we should solve the following problem. 
P r o b l e m  1. To determine the constant A and the function f ( k )  that  is analytic in the band 

0 < ~ p <  1, - o o  < 9p < oc (4) 

and satisfies the boundary conditions of constant pressure (Bernoulli integral) 
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d r 2  A 
dx - 1 - 2 I m f  (W = 1), (5) 

and even bo t tom 
Im f = 0 (r  = 0). (6) 

It is believed that  expansion in a shallow-water series should be preceded by different extensions in two 
different directions. For example, Friedrichs and Hyers [11], examining a particular case of solitary waves, 
write tha t  if the horizontal independent variable is subjected to extension that  depends on the parameter  r 
while the vertical independent variable is unchanged, the harmonic character of the functions describing the 
flow is disturbed. They believe that  this procedure is obligatory with a direct approach to studying solitary 
waves. How does one construct the shallow-water series expansion for conformal mapping'? If different 
extensions in ~ and r are introduced, all advantages of the complex description of the problem are lost. We 
act differently: we assume that  f 0 ( )  is a function of X that  varies slowly, i.e., a small parameter  r exists and 
f depends on z = x + iy = ~)~ and not on X- The  new function is denoted by the same character f (z ) ,  and 
from the context below it is always clear which argument the function f has. The function f ( z )  remains 
analytic, and its real and imaginary parts  are harmonic functions. 

D e f i n i t i o n  1. A series expansion of the form 

f ( z )  = s - l  fo(z)  + c f l ( z )  + ~3f2(z) + . . .  (7) 

is called a shallow-water series. 
We denote gj(z)  = d f j ( z ) /d z .  Below, the derivative d f ( z ) / d x  = go(z) + r + ~492(z) + . . .  is 

also called a shallow-water series expansion. At first glance, the Definition 1 is incomplete and should be 
supplemented by the series for the constant 

A = A0 +~2A1 + ~ A 2  + . . .  (8) 

because in solving the Problem 1, it is necessary to use both  series (7) and (8). Actually, series (7) is 
autonomous since, as shown below, there is a formulation of the wave problem that  does not contain A. 

The shallow-water series is consistent if for ~ = 0 there is a flow with a horizontal free surface and with 
the Froude number equal toun i ty ,  i.e., ~ -- Fr -- 1. Thus, from (2) and (3) we determine the initial terms 
fo = z / 3  and A0 -- 1/27. The  following terms of the series are found from the solution of the differential 
equations obtained by substitution of series (7) and (8) into (4)-(6) and equating terms with identical powers 
of e. Since the calculations are rather complicated, we make a number of simplifications. 

The first simplification consists of moving over from the boundary-value Problem 1 to an equation tha t  
is valid not only on the boundary but  also in a certain region. By virtue of the symmetry principle, from the 
even bot tom condition (6), we have f(~; + i) = f ( ~  - i). Hence, condition (5) can be writ ten as 

d f ( ~  + i) d f ( ~ -  i) A 
d~ dqz - 1 § i [ f ( ~  + i) - f ( ~  - i)]" (9) 

We continue this equation analytically from the boundary. Replacing ~ by )/, we obtain the cubic-nonlinear 
differential-difference equation 

d.f(x + i) d f ( x  - i) A (10) 
dx dx  1 + i [ f ( x  + i) - f ( x  - i)]" 

However, the wave problem is quadratic-nonlinear, which was first shown by Babenko [12], who derived 
the corresponding operator  equation. Therefore, the second simplification consists of obtaining a quadratic- 

nonlinear implication of (10). Replacing X by X + i and )g - i, we obtain 

(ii) d f ( x  dE + 2i) {i + i [ f ( x  + 2i) - f (x ) ]}  = dfOg)/dx;  

- (12) d f ( x  dx  2i) {1 § i[ fOl  ) - f ( x  - 2i)]} = d f ( x ) / d x "  

Equating the left sides of (11) and (12), we obtain the required implication. Thus, the third simplification is 
achieved: the new equation does not contain A. Thus, to find waves on water, instead of solving Problem 1, 

we solve the following problem. 
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P r o b l e m  2. To find an analytic function f ( x )  that,  in a certain region, satisfies the equation 

d f ( x  + 2i) 
{1 + i [ f ( x  + 2i) - f(x)]} - d f ( d x  2i) {1 + i [ f ( x )  - f ( x  - 2i)]}. (13) 

d)c 

In transition from Problem 1 to Problem 2, the replacement of p by X, i.e., the conversion from (9) to 
(10), is important.  This is equivalent to the analytic continuation of f (x )  from the boundary of the band (4) 
to a certain region outside the band, which is possible if there is a region without singular points outside the 
band (4). We assume, for example, that  f(X) is analytic in a certain rectangle ~1 < ~ < ~2, --2 < ,29// < 3. 
Then, Eq. (10) is valid in the smaller rectangle F1 < ~ < P2, - 1  < W < 2. The shift of the latter by - i  
and + i  gives, accordingly, two new rectangles, in each of which (11) or (12) holds. The overlapping of these 
rectangles gives the rectangle pl < p < F2.0  < g, < 1, i.e., the part of the band (4), in which (13) holds. 

S o l u t i o n  of  t h e  P r o b l e m  in Series.  We cannot prove the analyticity of f (~)  outside the band (4), 
and, hence, we cannot prove that  Problem 2 is an implication of Problem 1. However, it is important for us 
that  the solutions in series (7) and (8) of Problems 1 and 2 give identical results. 

Replacing X by z in (13), we obtain 

d f ( z  + 2iz) {1 + i [ f ( z  + 2i~) - f(z)]} - d f ( z  - 2i~) {1 + i [ f ( z )  - f ( z  - 2i~)]}. (14) 
dz dz 

Let us show that Eq. (14) can be written as d{ . . . } /dz  = 0. Hence, the expression in braces should be a 
constant. We rewrite (14) in the form 

d f ( z  + 2ir d f ( z  - 2i-~) 
i(A1 + A2) + dz dz - O, 

where 1 d 
A1 = 5 d-'~ ~ {[f(z + 2i~) - f(z)] 2 + [f (z  - 2i~) - f(z)]2}, 

A2 = dr(z_____)) { f ( z  + 2i. ~) + f ( z  - 2i~) - 2f(z)} 
dz 

and substitute the Taylor series ext~ansion into these expressions: 

oc (+2i~) / dl dS(z • 2i~) _ ~ (•162 l d l+1 
f ( z  • 2is) - f ( z )  = E l! dz t f ( z ) ,  dz l! dzl+ 1 $(z) .  

/=1 /=1 

The quantity AI is represented as a derivative. A similar representation can also be obtained for A2 if we 
use the identity 

2 dr(z)  d2Jf(z)  
dz  dz2J 

2 j - 1  
d E (-1)p+I dPf ( z )  d 2 j - p f ( z )  

dz  dzP dz 2j-p 
p = l  

After some simplifications, we have 

c~ 2 m - 1  dpf(z) d2m_pf(z ) 
d ~i ~ (2i.~) 2m ~ ~mp dz~ dz2m-P 

r a = l  p = l  

where "/rap = 1/ (p[(2m - p)!) + (-1)p+1/(2m)!. 

+ 2 (2i' )2m+1 d2m+lf(z) } 
ra=o (2m + 1)! dz 2m+1 = O, 

(15) 

~ l--d~J + 2 ', dz ] } =0 .  
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We substitute the shallow-water series expansion (7) into Eq. (15). Equating to zero the coefficients 
at r (j >/1), we obtain 

d 2rn-1 j-m ~ } dPfl d2ra-Pfj_m_ l (2i) 2ra d2m-lfj_ m 
Z ( 2 i )  2m Z dzP dz2m-,  z2 -1 = 0  (16) 
m = l  p = l  l=0  m----1 

The first nontrivial equation of (16) for j = 3 has the form 



P 

Fig. 2 

The  expression in braces should be a constant.  We designate it by #1. Similar constants  #j-2 arise 

in integrat ing the next equations of (16). As a result, replacing fj(z) by gj(z), we formulate the following 

theorem. 
T h e o r e m  1. The functions gj(z) satisfy the differential equations 

" (27/2)g  (17) 91 + = #l ,  

g}' + 27glgj = hj (j >~ 2); (18) 

where j 2rn--1 j - -m+l  dP_lg I d2m_p_lgj+2_m_ ! 

hJ = E E amp E dzp-1 dz2m-p -1 
m=2 p=l  /=1 

j - 1  j + l  
27 E glgj+ l_ l t_ E ~ l d2l-2 gj+ 2-I 
2 dz 2l-2 " + ].tj. (19) 

l=2 /=3 

The constants O~rnp and t31 are obtained from the formulas 

[ 1 (-1)p+11 1 - l = 9(--1)m22(m-1) p)! + J '  = 3(--1)Z22t-1 

and the constants pj are not determined. 
Thus we have a recurrent chain of differential equations from which gj (z) can be sequentially obtained.  

Below, it is shown tha t  there is a set of even periodic solutions of Eqs. (17) and (18) tha t  depend on two real 

parameters .  The  unknown #I is expressed in terms of these parameters .  The  remaining constants  #j (j >~ 2) 
are a rb i t ra ry  numbers,  and an even periodic solution gj (z) exists regardless of how they are chosen. 

F i r s t - O r d e r  A p p r o x i m a t i o n .  Integrat ing Eq. (17), we obtain 

(g~)2 = _9g3 + 2#1gl + const = P(gl) -  (20) 

The  cubic polynomial  P(gl) = - 9 ( g l  - u0)(gl - r ' l)(gl - v2) should have only real roots t~0, vl,  and v2. 
Indeed, the velocity at the bo t t om  under the crest and the t rough reaches an extremum. Since the quant i ty  

const/(df/dx) has the meaning of velocity, g~ should be equal to zero at  these points. From (20) we find 
tha t  P(gl) = 0 at  these two points at  the bo t tom.  Thus,  a t  least two roots P(gl) are real since the function 

gl is real everywhere at the bot tom.  The  reality of the third root follows from the reality of the polynomial  

coefficients. 
Wi thout  loss of generality, we set v0 > t,1 > v2. The  coefficient at g2 in P(gl) is equal to zero, and, 

hence, 

u0 + ~1 + v2 = 0. (21) 

We examine Eq. (20) at the bo t tom,  i.e., we set z = x. Under the wave crest (x = 0), the liquid velocity 
has a minimum. Therefore, with increase in x, we have g~ < 0 in the neighborhood to the right of the point x = 
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0. This allows us to select the proper sign in extracting the root: dgl/dx = - 3  V/- (g l  - "0)(gl - Ul)(gl - "2) 
(x > 0). The  radicand should be positive and limited. On the plot of P(gl), these conditions correspond to 
the chosen segment (Fig. 2). The function gl takes the maximum value v0 under the crest x -= 0. Therefore, 
the constant of integration is known: 

g l  

df  - 3 x .  

V/--(f - -  bIO)(~ - -  /']i)(~ - -  "2) ~0 
On the left side there is an elliptic integral (for more details see [13]), which is inverted to give 

gl = -0 - ( -0  - -1 )  s n2 (px ,  k) (0 k 1); (22)  

3 ~ o  o -  " i  P = ~ v / ~ -  v2, k = (23) 
" 2  

The five parameters "0, vl, v2, P, and k are related by three Eqs. (21) and (23). Therefore, two parameters - -  
p and the modulus of the elliptic functions k - -  can be considered independentJ  

Expressing all parameters in (22) in terms of p and k and replacing x by z, we find the first nontrivial 
term of the shallow-water series expansion: 

7. 

gl = p 2 1 4  ( l + k  2 ) -  k 2snepz f l = P 2  ( l + k e ) z  -j 
0 

To obtain a solution expressed in terms of X, it is necessary to introduce the new small parameter  
0 = ep. The conformal mapping then takes the form 

x 1 4 / } 
f 0 c ) = ~ X +  ( l + k 2 ) x  - ~ k  2 sn28(d(  + 0 ( 0 %  

0 

We obtained a two-parameter set of wave solutions, with the wave amplitude and length depending on both 
parameters 0 and k (0 ~< k ~ 1). As k -~ 0 and k ---* 1, we have sn ~ sin and sn --* th. These limiting cases 
correspond to sinusoidal and solitary waves: 

( 4 )  ( 1 -  02 2~)  4 1 02 1 sin20x,  f(k)~--X ~ +O~tanhOx. I(X) ~-- X ~ + +Ok 2 

S e c o n d - O r d e r  A p p r o x i m a t i o n .  We now solve of Eqs. (18). We introduce designations for the 
arguments of the elliptic functions u = pz and for the Jacobi elliptic functions s -- snu, c ---- cnu  and 

d -- dnu.  
We consider the homogeneous equation (18) 

gj' + 27g:gj = 0. (24) 

Differentiating (17), we see that  g~ is a solution of this equation. Thus, we obtain the first solution of (24): 

d s 2 
v(z) = dz = 2pscd. (25) 

Because the Wronskian is equal to unity, the second linearly independent solution is v f dz/v 2. Hence, the 
. 2  

general solution (18) can be written as 

s.z i .zl  -- + + v 7 vhsdz.  (26) 

1Without loss of generality, the parameter  p can be set equal to unity because, as shown below, it is contained 
only in the product  :p. Treating the product :p  as a new small parameter  is equivalent to the assumption 
that  p = 1. 
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If the function hj is known, then, according to Lemma 1 for the even and periodic function gj (z), the constants 
51 and c2 should be determined uniquely. 

We calculate g2. From (19) for j = 2, we have 

d2gt .15 (dgl ~2 4 d4gl + #2- (27) 
h2 = 1591 ~ + \-d~-z / + 1-~ dz ------J 

The  quanti ty h2 is a polynomial in s 2. To prove this statement,  we use the following lemma. 

L e m m a  2. If G1 and G2 are polynomials in s 2 of degrees nl and n2, respectively, the product 

d2p-JG1 dJG2 
dz 2p-j dzJ (0 <<. j <~ 2p) 

d2p-iG1 dJG2 
dz 2p-j dzJ (0 <. j <~ 2p) 

is a polynomial in s 2 of degree nl + n2 + p. 
P r o o f .  By induction over j invoking the formula d/dz = 2Pv/(1 - s2)(1 - k 2 s 2) d/ds, we find that  if 

G is a polynomial in s 2 of de~ee  n, then its odd and even derivatives are determined from the formulas 

d2J- 1 G d 2j G 
dz2j_l - s v / ( 1 - s 2 ) ( 1 - k  2s 2)-hI. dz2J -- N,  

where .hi and N are polynomials in s 2 of degrees n + j - 2 and n + j ,  respectively. Thus, Lemma 2 is proved. 
Lemma 2 can be written in simplified form: each differentiation of a polynomial in s with respect to z 

increases its degree by unity. Because gt is a polynomial in s 2 of degree 1, then from (27) it follows that  h2 
is a polynomial in s 2 of degree 3: 

h2 = r + 2 + @4 + (28) 

We note that  all coefficients of this polynomial are known, except for b ~ because this coefficient contains the 

unknown constant p2. 

l b ~ s 4 +  1b22s 6 + 4  2 �9 Denoting In view of (25) and (28), we have vh2 dz = h2 d(s 2) = b~ 2 + ~ g 

s2n-4 
Jn = scd ~ du, from (26) we obtain 

( ) 1 1 b J3 + b J4 + b J5 (29) g2 = Cl scd + c2J1 + ~ b~ + ~ g ~ �9 

All integrals ,In (1 ~< n ~< 5) included in (29) can be calculated. They consist of three terms: a square 

in s 2 and the functions u scd and scd / d 2 du, multiplied by certain constants, and have the form polynomial 
, 2  

Jn = D o + D i s  2 + Dn2s 4 + Enu scd + F,~ scd f d 2 du. This can be proved by direct differentiation using, for 

example, the MAPLE system. The constants D m, En, and Fn are shown in Table 1. 
J 

From (29) it follows that  g2 also consists of a polynomial in s 2 and the functions u csd and scd / d 2 du: 

g2=a~ (30) 
0 

In (29), among the constants Cl, c2, b ~ b21, b22, and b 32, the unknowns to be determined are cl, c2, and b ~ In 
(30), the unknown constant cl is retained, and the new constants - -  the polynomial coefficients a~ al, and 
a~ and wl and w2 - -  are functions of the unknowns c2 and b ~ For example, in wt and w2, the unknowns 
enter as follows: 

1 {C2(k 2 -  2 ) -  b~ + }, 
~ d l -  k 2 - i 2p --5 " ' "  

90 (31) 
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2 k  2 
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l + k  2 
(k2 - 1)2 
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1 
k 2 - 1 

1 
k 2 ( k  2 - 1) 
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l + k  ~ 
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2(k 4 - k 2 + 1) 

k4(k2 - 1)2 

1 
022-  (k 2 -  1)2 - §  "'" 

Let  the cons tan t  G2 on the right side (27) be  known. Then,  one of the three unknowns b ~ is specified. 

Hence, the  funct ion h2 is determined,  and according to L e m m a  1, the  unknowns Cl and c2 are de termined  

uniquely. I t  is necessary to set ct -- 0 because the  periodic funct ion scd is odd. Next,  if we require t ha t  the 

/ d 2 du be periodic, then, as follows from (30), the funct ion g2 is bo th  even and  quan t i ty  021 § 022 periodic. 
* J  

0 

This  requirement  is satisfied because a l though  the  funct ion f d 2 du is not  periodic, its value increases by 
J 

0 
2 K ( k )  as u increases by 2E(k) .  Hence, go is a periodic funct ion if 

021K(k) + 02 E(k) = 0. (32) 

Substituting (31) into (32), we obtain an equation for the unknown ci. 

However, the constant #2 is unknown, and, hence, the function g2 is not determined uniquely, generally 

speaking. Let us show that the nonuniqueness is related to the uncertainty of the parameter r We analyze 

how the  shal low-water  series expansion 

df 1 1 
= +  2gl(z) +   g2(z) + . . . .  5 +  291 +  492( x) + . - .  

changes  when e is replaced by e + ae 3 + . . . .  where  a is a real number .  W i t h  allowance for the  Taylor 

series gl( [c  + ae 3 + ..-]X) = gt(~X) + a~3x dgl /dz  + . . . ,  we obta in  the new shallow-water  series expansion 

df / dx  -- 1 /3  + e2gl (z) + r + . . . ,  where ~2(z) = g2(z) + 2agt (z) + az dgl (z)/dz.  Hence, the above change 

in e leads to  a change in g2(z). Because z dgt /dz  coincides with u s c d  with accuracy  to  a numerical  coefficient, 

the  last s t a t emen t  can be refined: with a change in e the coefficient Wl in (30) changes. It  is possible to select 

s such t h a t  wl = 0, and,  hence, it is also necessary to  set w2 = 0 (otherwise, g2 is a nonper iodic  function).  

On ly  in this case is the  funct ion g2 a polynomia l  in s 2. The  quan t i ty  a is de termined uniquely from the 

equa t ion  Wl = 0. 
0 1 2  2 4  Thus,  there  is a pa ramete r  ~ for which g2 has the  form of a square polynomial  in s2:g2 - a2§  +asS �9 

The  coefficients of  this polynomial  are expressed in terms of  the unknowns  c2 and b ~ (cl = 0), which can be 

found f rom the  solut ion of the linear sys tem wt = 0, 022 = 0 [02t and w2 are de termined in (31)]. As a result, 

we have 

g2 = P4[-(16/1215)(13k4 - 43k2 + 13) - (64/81)k2(1 + k2)s 2 + (32/27)k4s4]. 

H i g h e r - O r d e r  A p p r o x i m a t i o n .  We prove by incluction over j t ha t  gj are polynomials  in s 2. Let 

the  induct ive hypothes is  be valid: for l < j ,  all gl are polynomials  in s 2 of  degree l. We solve Eqs. (18). 

L e m m a  2 leads direct ly  to  

91 



L e m m a  3. I f  gl = a ~ + a~s 2 + . . .  + als o-l (l < j ) ,  then the function hj is a polynomial in s 2 of order 
5 + 1: = bo + b)so- + . .  + 

Taking into account (25), from (26) we obtain the following formula, which is similar to (29): 

~ y  b n-2 
1 2). (33) gj = cl scd + co-all + ~ n - -  1 (J > 

n----2 

Here the unknowns are Cl, c2, and b ~ Previously, the form of the integrals Jn was obtained only for 1 ~< n ~< 5. 
To establish the form of the remaining integrals which are included in (33), we need 

L e m m a  4. For n >>. 5, we have 

Jn = Pn(s) + Qnu scd + Rn scd f d 2 du, (34) 

where P~(s) is a polynomial in s 2 of degree n - 3 and Qn and Rn are constants. 

P r o o f .  We designate K~ = scd ] S 2n d'a. Using the recursive formula 

1 c2d2s2n_ 2 (2n - 2)(1 + k 2) g n - 1  2n - 3 
K~ = (2n - 1)k 2 + ( 2 n -  1)k 2 ( 2 n -  1)k 2 Kn_o-, 

it is not difficult to prove by induction over n that  

K~ = L , ( s )  + Mnu sod + N~ sod f d ~ du, (35) 

where Ln(s) is a polynomial in so- of order n + 1 and 21In and Nn are constants. Using (35) and applying 
induction over n to 

1 1 n-2 
Jn+2 : ~_) J,~+l + ~-~ E K j  

j=O 

we obtain (34). Lemma 4 is proved. 
From (33) we have 

d2c 2 u s c d  

k2(1 - k 2) ko- 
scd f do- du, 

- -  +  2(f-k2) 

j It 

g j = E a ~ s 2 n + c l s c d + s c d ( W l U + W ~ / d 2 d u  I .  (36) 

n=0 0 

The  further reasoning is similar to the one above. In (36), we set cl = 0 and express the remaining constants 
ay, wl, and w2 in terms of c2 and b ~ For example, wl and w: are determined from formulas that  follow from 
(31) when b ~ is replaced by b ~ Replacing r by •+ ar 2j-1 + . . . .  we replace gj (z) by g j ( z )+  2agl ( z ) + a z  dgl /dz ,  
and, hence, change wl in (36). We set wl = 0. This condition determines the constant a uniquely. Requiring 

that  w2 = 0, we eliminate the nonperiodic term. Next, solving the system wl = 0, w2 = 0, we obtain e2 and 
b ~ and then, the polynomial coefficients a~. Thus, by induction over j ,  we proved the following theorem. 

T h e o r e m  2. There exists a unique parameter e such that in the shallow-water series expansion 

df _ l 
dx 3 + e291(eX) + e4g2(~X) + " "  (37) 

each term gj is a polynomial in s 2 of degree j ,  i.e., 

o + a)s + + ajs:J (38) g j  = a j  . . .  

C o m p u t a t i o n s .  We seek gj in the form of the polynomial (38). Substituting (38) into Eq. (18) and 
equating terms with identical powers of s, we have a linear system of equations with a triangular matrix. The 

five initial terms of the series (37) are 

gl 4 -2 2 2~ go- 32 kas4 64 k2(1 + k2)s 2 16 (13 - 43k 2 + 13k 4) 
- + ( l + k 2 ) ,  p 4 -  - g /  1215 ' p2 27 

4352 256 g3 4352 k6s6 + k4(1 + ko-)s 4 - - -  k2(2 + 49 k s + 2 k4)s 2 
p6 - 1215 1 - ~  3645 
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64 (I +k 2 ) (2 4 2 k  4 +76-5  -521k +242)' 

g4 _ 1,040,384 kSs8 
p8 91,125 

4,161,536 k6(1 + k2)s 6 
273,375 

+ - -  16,384 k4(59 k 4 + 3 2 2  k2+59)s4 
273,375 

1024 k2( l+k2) (1898  k4+15,079  k2+1898)s2 
5,740,875 

256 

17,222,625 
,(16,135 - 43,658 k2+112,101 k 4 -- 43,658 k6+16,135  ks), 

g5 
plO 

11.165 696 kl0sl0 + 
297,675 

11,165.696 kS(1 + k2)s s _ 16,384 
178,605 120,558,375 

k6(189,041 + 730,984 k 2 

8192 k4(1 + k2)(37,528 k4473.303 k2 + 37,528)s 4 + +189,041 k4)s6+ 120,558,375 

+ 
8192 

361,675,125 
k2(26,909 - 166,402 k 2 - l l l , 6 0 0 k  4 - 166,402 k6+26,909  kS)s 2 

1024 (1 + k2)(3.314,710 k s - 15,153,473 k 6 + 7,595,607 k 4 15,153,473 k 2 + 3.314,710). 
+ 11,935,279,125 - 

The  above formulas are rather complicated. They  are polynomials in s 2 whose coefficients are, in turn, 
polynomials in k 2. We note that  this is not a single representation of the solution. It is possible to represent 
gj as polynomials in c 2 or d" whose coefficients are also polynomials in k 2. The simplest representation of 
the solution is obviously obtained if gj is expressed via the first term of the series gl. Introducing the new 
variable ~ : - (4 /9 )k2s  2 + (4/27)(1 + k2), we write gj in the form of polynomials in ~: 

91 92 ~2 368 
p--~_ = ~, p-~ = 6 - --1215 (1 - k 2 + k4). 

g.~3 204 (3  64 (1 - k 2 9664 p6 =-5"- --~ +kn)~+45-'5"~(k2- 2)(-l+2k2)(l+k2)' 

g4 _ 36 ,576  ~4 
p8 125 

69,632 (1 - k 2 + k4)~ 2 
3375 

2'936'576(k2_2)(_1+2k2)(1+k2)(  2,196,736 (1 _ k2 + k4)2 
+ 1,913,625 5,740,875 ' 

g_L5 = 2,649,672 (5 30,114,304 
pl0 1225 165,375 

1,944,064 .k2 (1 - k 2 + k4) ;  3 + - 2 ) ( - 1  + 2k2)(1 + k2) ;  2 

20,860,928(1 _ k2 + k4)2 ( + 7,820,391,424 (k 2 _ 2 ) ( -1  + 2k2)(1 + k2)(1 - k 2 + k4). 
13,395,375 35,805,837,375 

The new formulas are much simpler. The coefficients of ( are polynomials in k 2, which can be factored, 
and only the numerical coefficient remains undetermined. There are two types of factors: the expression 
1 - k 2 + k 4 or this expression multiplied by (k 2 - 2)(2k 2 - 1)(k 2 + 1). 

We emphasize the property gj (k 2, ~) = (-1)Jgj (1 - k 2, - 4 ) ,  which implies that  the solution expressed 
in terms of 02, k 2, and ~ has invariance: 

~x (O2,k~,~) = ~X ( -O2,1-  k2,-~). 
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This property appears to be important since it gives an implicit nonlinear transformation that relates two 
solutions with different wavelength. For example, solitary waves (k = 1) and waves on a surface of an infinitely 
deep liquid (k = 0) are related by the transformation 0 --~ iO. 

Conclusion.  In the present paper, we propose a new method for deriving the shallow-water expansion 
based on replacing the integrodifferential equation to which the wave problem is usually reduced by the 
differential-difference equation (13). As compared to the existing methods, the proposed method is simpler 
and can be useful, in particular, in numerical calculations since it allows one to construct series more rapidly 
and more precisely and to find a greater number of series terms. Other studies (see, for example, [6-8]) 
employ a more complex method, in which four series, whose terms are functions of two variables, are used 
simultaneously. 

In the theoretical aspect, the proposed method is also of interest: 
1) for Eq. (13), exact solutions are known [1-3]; 
2) the Stokes series expansion (the second known expansion of the theory of waves on water) is obtained 

in a natural fashion from (13) if a solution of this equation is sought in the form of the series 

f (x)  = ]0(k) + s/l(;y) + s212(X) + . . . .  (39) 

It is known that the Stokes series expansion is not adequate for describing long waves, and, in contrast, the 
shallow-water series expansion is appropriate for long waves but unsuitable for short waves. It is now possible 
to compare both series (7) and (39) and to attempt to construct a series expansion that applies universally 
for all wavelengths. 

We are grateful to N. I. Makarenko for useful discussions. 
The work was performed within the framework of the integration project No. 43 of the Siberian Division 

of the Russian Academy of Sciences "Research of Surface and Internal Gravity Waves in a Liquid." 
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